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The origin of life is one of the outstanding conundrums of modern biology, which has been
tackled mostly from a chemical point of view. It is also the playground of creationists who use
probability arguments to deny that life could ever have begun “at random”. The latter (Babuna,
2008; Gotfryd, 2008; Gündogdu, 2008) especially like to quote scientists who express doubt, such
as:

“In a popular lecture I once unflatteringly described the thinking of these scientists as a
‘junkyard mentality’. Since this reference became widely and not quite accurately quoted
I will repeat it here. A junkyard contains all the bits and pieces of a Boeing 747,
dismembered and in disarray. A whirlwind happens to blow through the yard. What is the
chance that after its passage a fully assembled 747, ready to fly, will be found standing
there? So small as to be negligible, even if a tornado were to blow through enough
junkyards to fill the whole Universe” (Hoyle, 1984).

I would like to suggest that artificial life (Alife) enthusiasts take up Fred Hoyle’s challenge, that
in a way they simulate a tornado going through a junkyard of parts, and come up with something
we would all agree is alive, in the Alife sense, from components that are not alive in the Alife
sense (Pennock, 2001; Pennock, 2007).

What is needed is the statistical mechanics approach of the ensemble (Hill, 1960), a large number
of “identical” systems, each simulating its own tornado and junkyard of parts. Given the power of
modern parallel computation, the size of the ensemble could be considerable. All we need is for
one member of the ensemble to make the transition from non-Alife to Alife to prove the point.
Thus I am suggesting that Alife enthusiasts have an opportunity to solve the “Origin of Artificial
Life” problem well before the chemists will solve the “Origin of Life” problem. By the Strong
Alife Hypothesis (Levy, 1992; Boden, 1996; Olson, 1997; Anderson & Copeland, 2002), in
which Alife is considered a realization of life, Alife enthusiasts will also have solved the latter
problem.

Let’s now try to get a handle on the magnitude of the problem. Everyone seems to be willing to
have the junkyard already full of scraps that resemble parts of organisms, that are strong enough
not to be pulverized by tornados. We don’t have to simulate the Big Bang or the condensation of
atoms or even the nucleosynthesis of the heavier “metals” (as the astronomers call all atoms more
massive than helium.) We might even be allowed some pretty complex organic molecules, as
these are now found in abundance in the universe, and presumed to be abiotic (Gordon & Hoover,
2007). Abiotic capsules, which might isolate components into an ensemble of junkyards, might
even be permitted by the nay-sayers (Fox, 1965, 1972; Brooke & Fox, 1977; Fox, 1980, 1980;
Luisi, Stano, Rasi, et al., 2004). So, taking the assembly problem as the goal, let us assume that
capsule j in an ensemble of N capsules has nij copies of i = 1,…,Cj components, each not Alife
alive, but that some subset of their arrangements within the capsule meets the criterion of being
“Alife alive”. In the acceptance of the tornado and junkyard paradigm for the origin of life,
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creationists have already conceded a materialistic interpretation of at least primitive life in putting
forth their improbability arguments, so the only question is one of combinatorics. Combinatorics
are more constrained the smaller the volume of a capsule, so the concept of the crowded
cytoplasm (Fulton, 1982; Berg, 1990; Han & Herzfeld, 1993; Garner & Burg, 1994; Murphy &
Zimmerman, 1994; Lindner & Ralston, 1997; Minsky, Ghirlando & Reich, 1997; Jaenicke, 1998;
Rohwer, Postma, Kholodenko, et al., 1998; Burg, 2000; Ellis, 2001, 2001; Kinjo & Takada, 2002;
Bernado, Garcia de la Torre & Pons, 2004; Ovadi & Saks, 2004; Tokuriki, Kinjo, Negi, et al.,
2004; Weiss, Elsner, Kartberg, et al., 2004) may actually enhance the probability of some capsule
making the transition from non-Alife to Alife.

Given an origin of the universe 13.7 x 109 years ago, and firm evidence for life on earth at
3.8 x 109 years ago, real life could have originated any time between 106 ABB (years After the
Big Bang) to (13.7-3.8) x 109 ≈ 1010 ABB. That is time enough for many tornados. So we’re not
talking about one tornado in one junkyard, but quite a plethora of consecutive tornados in each of
a rather large ensemble of capsules. At 1011 stars in our galaxy and 1011 galaxies in the visible
universe (Gordon & Hoover, 2007), half of which may have planets, and a froth of capsules say
200 nm in radius, to correspond to the smallest known cell (Huber, Hohn, Rachel, et al., 2002;
Waters, Hohn, Ahel, et al., 2003), in a monolayer on half the surface just one planet per solar
system of radius 5000 km, we get 1027 capsules per solar system. This comes to 1049 capsules in
the known universe. That’s a rather large ensemble of capsules within which the transition of life
could have occurred in a few. The limit on an Alife approach is really on how many capsules and
tornados we can simulate with present day computers, and whether that will be enough to solve
the Origin of Alife Problem.

In a limited way, the problem has already been solved in the affirmative. In The Game of Life
(Gardner, 1970; Pennock, 2001; Beer, 2004) a random starting condition will often produce
gliders and other “self-reproducing” patterns. Another example is the spontaneous formation of
patterns from subsets of random sequences of RNAs, such as palindromes (Guo, 2005). This
suggests a way to achieve modularity in the tornado assembly process. In an RNA palindrome,
the binding between complementary portions of an RNA strand can serve to hold it together when
a tornado comes through, compared to nonpalindromic portions of the sequence. Thus, in a world
of irreversible processes, a bias could occur favoring sequences that produce bigger, more
complex structures. Given the enzymatic nature of RNA, and the baby steps that have been taken
towards its possible self-replication, we can start to see how the Origin of Alife might be
programmed. Experiments on the directed selection of RNA already select out quite rare specific
RNA sequences:

“SELEX (systematic evolution of ligands by exponential enrichment) has proven to be an
excellent tool for finding nucleotide molecules that have a high affinity for a particular
target from a random pool under specific conditions. It involves three processes, namely:
selection of ligand sequences that bind to a target; partitioning of aptamers from non-
aptamers via affinity methods; and amplification of bound aptamers…. The most
successful aptamers selected by SELEX represent 1 in 109 to 1 in 1013 of the molecules in
the starting library” (Gopinath, 2007).

Suppose only one in 1013 capsules made the transition from non-life to life. Life would then have
started 1049/1013 = 1046 times in the known universe, i.e., much more frequently than the 5 x 104

minimum starts necessary to populate the whole universe (Gordon & Hoover, 2007). With each
of the 1049 capsules experiencing just one tornado per year to rearrange its parts, with 1010 years
available the universe could have 1059 opportunities to start life. However, diffusion within a
capsule will rearrange its components roughly every 0.1 sec, based on a diffusion coefficient of
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about 10 µm2/sec (Mullineaux, Nenninger, Ray, et al., 2006), raising the number of tornados by a
factor of 3 x 106, or about 1065 opportunities to start life. The nays may not have it.

To summarize, the challenge to the Alife enthusiast in trying to solve the Problem of the Origin of
Alife seems to be roughly the following:

1) Choose a criterion for distinguishing non-Alife parts from “live” Alife organisms.
2) By hand or simulated evolution, construct at least one Alife organism from non-Alife

parts that you deem alive by your criterion, so we know the goal is attainable. You have
acted as the Intelligent Designer in this case (Gordon, 2000).

3) Place random mixtures of these parts into a very large ensemble of capsules.
4) Let the parts interact in a partially irreversible fashion, i.e., simulate a system that is not

at thermodynamic equilibrium. This should allow some modularity to form.
5) Simulation of an energy source and sink could create a physics with gradients and fluxes

that provide some asymmetry within a capsule. For example, compactness of parts could
be interpreted as varying density, resulting in gravitational stratification or
electrophoretic separation (Jaffe, 1969; Dante, Michalik, Mathew, et al., 1995).

6) Let the modules interact in a higher order fashion, such as steric hindrance (no
overlapping), sticking together if they are “complementary”, knot formation, etc.

7) Run simulation of the ensemble of capsules for a long time.
8) See if your hand constructed Alife organism arises out of this ensemble of capsules, or

perhaps something else that meets your criterion of being live Alife, that you didn’t
anticipate.

Note that I have not constrained the parts to be similar to real molecules. Thus discussions of
what kind of physics to simulate, of the parts or their environment, is left open to the
programmer’s imagination, without constraints to make Alife look like real life, such as:

“The environment may be deéned either by natural geochemistry or artificially, but
should involve only simple forms of energy and material, so that the goal is to create an
encapsulated biochemical system that can derive energy from simple chemicals or light (a
simple form of metabolism, e.g. by redox coupling) and use information carried in
primitive genes. This proto-organism, which may be held together by a lipid aggregate,
should be able to self-replicate, use energy and nutrients from its environment, undergo
evolutionary changes over time, and die” (Bedau, McCaskill, Packard, et al., 2000).

One can adjust the guesstimates above in many ways. The bottom line is that the number of
opportunities for a spontaneous origin of life is huge, that creationists have accepted that simple
life is materialistically based and thus just improbable in their eyes, but that the number of
opportunities might indeed exceed the constraints of the combinatorics. Turning the above
pseudocode into a convincing simulation of the Origin of Alife will be a lot of work, but it could
produce a major advance in our understanding of the Origin of Real Life.
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